Скачать 

[Stepik] Погружение в Data Science и машинное обучение (Максим Дуплей)

  • Дата начала
Организатор: Ля-ля-фа Ля-ля-фа
Ссылки для скачивания
Ля-ля-фа
Ля-ля-фа
ТОП организатор
Сообщения
Монеты
0.0
Оплачено
55
Купоны
0
Кешбэк
0
Баллы
0
  • @Skladchiki
  • #1

Складчина: [Stepik] Погружение в Data Science и машинное обучение (Максим Дуплей)

Ссылка на картинку
изображение
Курс познакомит вас со сферой Data Science. Вы узнаете чем занимается
специалист в данной области, какие задачи решает и какие он применяет инструменты в своей работе. Мы с вами попробуем представить себя в роли Data Scietist и на практике на простых задачах попробовать обучить свои первые модели, а также сделать на их основании выводы.
Чему вы научитесь
  • Программировать на Python с нуля
  • Использовать популярные библиотеки Pandas и Scikit-learn
  • Обучать модели машинного обучения
  • Визуализировать результаты при помощи Matplotlib и Seaborn
  • Разбираться в метриках для оценки результата
  • Интерпретировать результат моделей ML
О курсе
Data Science - это популярная предметная область, которая занимает одну из лидирующих позиций среди других областей в ИТ.
Специалисты, которые занимаются анализом данных и машинным обучением очень востребованы во многих странах мира, в том числе и в России.
В дальнейшем эта сфера будет еще больше развиваться, так как многие компании понимают, что именно Data Scientist может привнести огромный вклад в развитие компании, который выражается также в денежном эквиваленте.
Этот курс не перегружен математическими формулами и выводами, задача познакомиться с областью, научиться практическим навыкам, а также сформировать целостную картинку о грамотном и поэтапном обучении моделей.
Курс состоит из 4 основных блоков, где в каждом блоке предусмотрены уроки и соответствующие шаги с теорией и практикой:
1. Введение
Вы сможете узнать, что такое Data Science, чем данная область отличается от Machine Learning, а также чем занимаются
специалисты в этих направлениях науки.
Познакомитесь с инструментом для анализа данных Python, а также средой разработки Jupyter Notebook.
Попробуем с вами установить их для дальнейшей полноценной работы.
2. Основы Python
В этом блоке вы сможете с нуля познакомиться с языком программирования Python: переменные, типы данных, функции, ООП. Набора перечисленных тем для начального этапа хватит для изучения и применения моделей машинного обучения.
Также вас ждут практические задания, где вы сможете отточить свои навыки программирования.
3. Библиотеки для визуализации и анализа данных
Вы познакомитесь с необходимыми инструментами, которые полезны в предварительном анализе данных, перед тем как будем обучать модель.
Это популярная библиотека Pandas для работы с табличными данными, Matplotlib и Seaborn - библиотеки для визуализации данных и результатов, в том числе обучения моделей.
4. Машинное обучение
В этом блоке мы познакомимся с моделями машинного обучения: как они работают, в какой ситуации какую модели применять.
Также разберем библиотеку Scikit-learn, где уже реализовано большинство ML моделей.
Научимся поэтапно выполнять предобработку данных, обучать модели, а также интерпретировать их результат.
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть авторский контент.
  • Like
Реакции: На это отреагировал(а) Arman-HJ
Поиск по тегу:
Теги
data science machine learning stepik максим дуплей машинное обучение

Зарегистрируйтесь или войдите, чтобы обсуждать и скачивать материалы!

Зарегистрироваться

Создайте учетную запись. Это быстро!

Авторизоваться

Вы уже зарегистрированы? Войдите.

Сверху